Bone health from infancy to adolescence: a narrative review of nutritional and lifestyle determinants

Authors

  • Khayati Moudgil Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius
  • Varsha Bangalee Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, South Africa
  • Thelma Mpoku Alalbila Aku Department of Pharmacy Practice, School of Pharmacy, University of Health and Allied Sciences, Ghana
  • Mekkanti Manasa Rekha Department of Pharmacy Practice, ABIPER Bangalore, Karnataka, India

DOI:

https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20253444

Keywords:

Bone health, Importance, Lifespan, Paediatric nutrition, Peak bone mass

Abstract

Lifelong bone health is largely determined by the foundation established during childhood and adolescence, when the skeleton undergoes rapid growth and mineralization. This paper explores the critical influence of early-life factors including nutrition, physical activity, hormonal balance and disease states on the development of peak bone mass, a key predictor of osteoporosis and fracture risk in later years. Emphasis is placed on the roles of calcium and vitamin D, the resurgence of nutritional rickets in both developing and developed regions and the decline in physical activity among youth worldwide. This narrative review integrates findings from global studies to highlight the importance of balanced diets, regular weight-bearing exercise and early screening in vulnerable populations. Ultimately, it underscores the need for a comprehensive public health strategy to promote optimal bone development from infancy through adolescence, ensuring skeletal resilience across the lifespan.

Metrics

Metrics Loading ...

References

Karl Bonjour JP, Theintz G, Law F, Slosman D, Rizzoli R. Peak bone mass. Osteoporos Int. 1994;4(1):7–13. DOI: https://doi.org/10.1007/BF01623429

Weaver CM, Gordon CM, Janz KF. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and update. Osteoporos Int. 2016;27(4):1281–386.

Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):14–27. DOI: https://doi.org/10.1016/j.bone.2006.07.006

Bailey DA, McKay HA, Mirwald RL, Crocker PRE, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the University of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9. DOI: https://doi.org/10.1359/jbmr.1999.14.10.1672

Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab. 1991;73(3):555–63. DOI: https://doi.org/10.1210/jcem-73-3-555

Hernandez CJ, Beaupré GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):843–7. DOI: https://doi.org/10.1007/s00198-003-1454-8

Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 2006;20(18):2492–506. DOI: https://doi.org/10.1101/gad.1449506

Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520–6. DOI: https://doi.org/10.1002/jbmr.2269

Juul A. Serum levels of insulin-like growth factor I and its binding proteins in health and disease. Growth Horm IGF Res. 2003;13(4):113–70. DOI: https://doi.org/10.1016/S1096-6374(03)00038-8

Grumbach MM. Estrogen, bone, growth and sex: a sea change in conventional wisdom. J Pediatr Endocrinol Metab. 2000;13(6):1439–55. DOI: https://doi.org/10.1515/jpem-2000-s619

Misra M, Katzman DK, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8. DOI: https://doi.org/10.1002/jbmr.447

Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US). 2011.

Bailey RL, Dodd KW, Goldman JA, Gahche JJ, Dwyer JT, Moshfegh AJ, et al. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr. 2010;140(4):817–22. DOI: https://doi.org/10.3945/jn.109.118539

Abrams SA. Dietary calcium intake and childhood bone development. Rev Endocr Metab Disord. 2001;2(1):39–46.

Wacker M, Holick MF. Sunlight and Vitamin D: A global perspective for health. Dermatoendocrinol. 2013;5(1):51–108. DOI: https://doi.org/10.4161/derm.24494

Cui A, Ma Y, Xie M, Li X, Liu Y, Song Y, et al. Prevalence of global vitamin D deficiency: a systematic review and meta-analysis. Clin Nutr. 2024;43(3):367–78.

Calvo MS, Whiting SJ, Barton CN. Vitamin D fortification in the United States and Canada: current status and data needs. Am J Clin Nutr. 2004;80(6):1710–16. DOI: https://doi.org/10.1093/ajcn/80.6.1710S

Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT. Vitamin D status: United States, 2001–2006. NCHS Data Brief. 2011;(59):1–8.

Gordon CM, Feldman HA, Sinclair L, Williams AL, Kleinman PK, Perez-Rossello J, et al. Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med. 2008;162(6):505–12. DOI: https://doi.org/10.1001/archpedi.162.6.505

Wagner CL, Greer FR; American Academy of Pediatrics. Prevention of rickets and vitamin D deficiency in infants, children and adolescents. Pediatrics. 2008;122(5):1142–52. DOI: https://doi.org/10.1542/peds.2008-1862

Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr. 2012;3(3):353–61.

Calvo MS, Whiting SJ. Public health strategies to overcome barriers to optimal vitamin D status in populations with special needs. J Nutr. 2006;136(4):1135–9. DOI: https://doi.org/10.1093/jn/136.4.1135

Jennings A, Welch A, Prynne C, Cook D, Pottinger E, Gates P, et al. Diet quality is associated with bone health in children aged 4–6 years. Public Health Nutr. 2014;17(9):1824–30.

Heaney RP, Rafferty K. Carbonated beverages and urinary calcium excretion. Am J Clin Nutr. 2001;74(3):343–7. DOI: https://doi.org/10.1093/ajcn/74.3.343

Kerstetter JE, Kenny AM, Insogna KL. Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol. 2011;22(1):16–20. DOI: https://doi.org/10.1097/MOL.0b013e3283419441

Lanou AJ, Berkow SE, Barnard ND. Calcium, dairy products and bone health in children and young adults: a reevaluation of the evidence. Pediatrics. 2005;115(3):736–43. DOI: https://doi.org/10.1542/peds.2004-0548

Abrams SA. Bone mineralization in childhood and adolescence. Endocrinol Metab Clin North Am. 2005;34(3):683–99.

Dawodu A, Tsang RC. Maternal vitamin D status: effect on milk vitamin D content and vitamin D status of breastfeeding infants. Adv Nutr. 2012;3(3):353–61. DOI: https://doi.org/10.3945/an.111.000950

Backström MC, Mäki R, Kuusela AL, Sievänen H, Koivisto AM, Ikonen RS, et al. Randomised controlled trial of vitamin D supplementation on bone mineral content in prematurely born infants. Arch Dis Child Fetal Neonatal Ed. 1999;80(3):161–6. DOI: https://doi.org/10.1136/fn.80.3.F161

Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415.

Misra M, Katzman DK, Cord J, Manning SJ, Mendes N, Snelgrove D, et al. Bone metabolism in adolescent boys with anorexia nervosa. J Clin Endocrinol Metab. 2008;93(7):3029–36. DOI: https://doi.org/10.1210/jc.2008-0170

Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec. 1987;219(1):1–9. DOI: https://doi.org/10.1002/ar.1092190104

Schoenau E. From mechanostat theory to development of the "functional muscle-bone unit". J Musculoskelet Neuronal Interact. 2005;5(3):232–8.

Ducher G, Courteix D, Même S, Magni C, Viala JF, Benhamou CL. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: a quantitative magnetic resonance imaging study in tennis players. Bone. 2005;37(4):457–66. DOI: https://doi.org/10.1016/j.bone.2005.05.014

Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, et al. Physical activity and bone measures in young children: the Iowa Bone Development Study. Pediatr Exerc Sci. 2001;13(4):393–406. DOI: https://doi.org/10.1542/peds.107.6.1387

Macdonald HM, Kontulainen SA, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res. 2007;22(3):434–46. DOI: https://doi.org/10.1359/jbmr.061205

Specker B, Binkley T, Vukovich M, Beare T. Volumetric bone mineral density and bone size in children 7–9 years: effects of physical activity. Bone. 2001;29(5):533–9.

Turner D, Hume P, Edwards T, Woodhouse D, Stewart T. School-based exercise programme improves bone health in children: a randomised controlled trial. Br J Sports Med. 2011;45(5):365–9.

Gunter K, Baxter-Jones AD, Mirwald RL, Almstedt HC, Fuchs RK, Durski SL, et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res. 2008;23(7):986–93. DOI: https://doi.org/10.1359/jbmr.071201

Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47. DOI: https://doi.org/10.1186/1741-7015-8-47

Faigenbaum AD, Kraemer WJ, Blimkie CJR, Jeffreys I, Micheli LJ, Nitka M, et al. Youth resistance training: updated position statement paper from the National Strength and Conditioning Association. J Strength Cond Res. 2009;23(5):60–79. DOI: https://doi.org/10.1519/JSC.0b013e31819df407

Jones G, Dwyer T, Hynes KL, Parameswaran V, Greenaway T, Pasco JA. Long-term associations between early childhood physical activity and adult bone: a 25-year prospective study. J Bone Miner Res. 2018;33(10):1794–800.

Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors. Osteoporos Int. 2016;27(4):1281–386. DOI: https://doi.org/10.1007/s00198-015-3440-3

Vico L, Collet P, Guignandon A, Lafage-Proust MH, Thomas T, Rehaillia M, et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet. 2000;355(9215):1607–11. DOI: https://doi.org/10.1016/S0140-6736(00)02217-0

World Health Organization. Global action plan on physical activity 2018–2030: more active people for a healthier world. Geneva: WHO. 2018.

Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, et al. Global consensus recommendations on prevention and management of nutritional rickets. J Clin Endocrinol Metab. 2016;101(2):394–415. DOI: https://doi.org/10.1210/jc.2015-2175

Downloads

Published

2025-10-27

How to Cite

Moudgil, K., Bangalee, V., Aku, T. M. A., & Rekha, M. M. (2025). Bone health from infancy to adolescence: a narrative review of nutritional and lifestyle determinants. International Journal of Research in Orthopaedics, 11(6), 1617–1624. https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20253444