Comparative utility of dual spectral computed tomography and functional magnetic resonance imaging in the preoperative evaluation of unstable fractures of the craniocervical complex: a systematic review of diagnostic accuracy and neurosurgical outcomes
DOI:
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20252893Keywords:
Dual-energy computed tomography, Functional magnetic resonance imaging, Craniocervical junction, Unstable fractures, Diagnostic accuracy, Ligamentous injuryAbstract
This systematic review critically appraises the sensitivity and clinical applicability of dual-energy computed tomography (DECT) compared with functional magnetic resonance imaging (fMRI) in evaluating unstable fractures involving the craniocervical complex and vertebral muscles. Nine studies were included, comprising retrospective cohorts, prospective diagnostic trials, and meta-analyses, with sample sizes ranging from 8 to 515 patients and heterogeneous fracture types. DECT demonstrated strong diagnostic performance in several contexts. For bone marrow edema (BME), DECT achieved 89% sensitivity, 98% specificity, and an AUC of 0.96 (p<0.001). In intervertebral disc injuries, sensitivity and specificity were 0.85 and 0.75, with significant attenuation differences (p<0.001). For pelvic fractures, DECT reached 89.5% sensitivity and 84.6% specificity, with moderate inter-rater reliability (kappa=0.516). Optimization with electron density imaging improved hematoma detection, raising sensitivity and specificity above 80% (kappa=0.82; p=0.04). Meta-analytic results confirmed overall sensitivity, specificity, and accuracy of 86.2%, 91.2%, and 89.3%, respectively. Nonetheless, MRI clearly outperformed CT in detecting ligamentous injuries and occult trauma, with a negative predictive value of 100% for cervical instability. Limitations of the current evidence include small samples, retrospective designs, interobserver variability, and incomplete subgroup analyses. Despite these, DECT remains a promising adjunct or alternative when MRI access is limited, particularly for BME and fracture line imaging. Future multicenter studies are needed to standardize protocols and strengthen generalizability.
Metrics
References
Charbonneau L, Watanabe K, Chaalala C, Bojanowski MW, Lavigne P, Labidi M. Anatomy of the craniocervical junction-A review. Neurochirurgie. 2024;70(3):101511. DOI: https://doi.org/10.1016/j.neuchi.2023.101511
Izzo R, Popolizio T, Balzano RF, Simeone A, Gasparotti R, Scarabino T, Muto M. Imaging of cranio-cervical junction traumas. Eur J Radiol. 2020;127:108960. DOI: https://doi.org/10.1016/j.ejrad.2020.108960
Riascos R, Bonfante E, Cotes C, Guirguis M, Hakimelahi R, West C. Imaging of atlanto-occipital and atlantoaxial traumatic injuries: what the radiologist needs to know. Radiographics. 2015;35(7):2121-34. DOI: https://doi.org/10.1148/rg.2015150035
Kim D, Viswanathan VK, Munakomi S, Menger RP. C1 fractures. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024.
Berkay F, Minhas A, Lyons JG, Fonte E, Foster N. Epidemiology of C2 fractures in the United States: A National Electronic Injury Surveillance System database study. J Craniovertebr Junction Spine. 2023;14(2):187-93. DOI: https://doi.org/10.4103/jcvjs.jcvjs_37_23
Salottolo K, Betancourt A, Banton KL, Acuna D, Panchal R, Bar-Or D, et al. Epidemiology of C2 fractures and determinants of surgical management: analysis of a national registry. Trauma Surg Acute Care Open. 2023;8(1):e001094. DOI: https://doi.org/10.1136/tsaco-2023-001094
Utheim NC, Helseth E, Stroem M, Rydning P, Mejlænder-Evjensvold M, Glott T, et al. Epidemiology of traumatic cervical spinal fractures in a general Norwegian population. Inj Epidemiol. 2022;9(1):10. DOI: https://doi.org/10.1186/s40621-022-00374-w
Martínez-Pérez R, Paredes I, Cepeda S, Ramos A, Castaño-León AM, García-Fuentes C, et al. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion. Am J Neuroradiol. 2014;35(5):1029-34. DOI: https://doi.org/10.3174/ajnr.A3812
Pezo A, Muslić-Musić M. Spectral computed tomography: basic principles, technological innovations and clinical applications. Knowl Int J. 2025;68(4):369-72.
Mahajan A, Mahajan A. Neuroimaging: CT scan and MRI. In: Principles and Practice of Neurocritical Care. Singapore: Springer Nature Singapore. 2024;189-215. DOI: https://doi.org/10.1007/978-981-99-8059-8_14
Cavallaro M, D'Angelo T, Albrecht MH, Ibrahim Y, Simon SM, Julian LW, et al. Comprehensive comparison of dual-energy computed tomography and magnetic resonance imaging for the assessment of bone marrow edema and fracture lines in acute vertebral fractures. Eur Radiol. 2022;32(1):561-71. DOI: https://doi.org/10.1007/s00330-021-08081-8
Pumberger M, Fuchs M, Diekhoff T, Kay GH, Michael P, Marcus RM, et al. Disk injury in patients with vertebral fractures-a prospective diagnostic accuracy study using dual-energy computed tomography. Eur Radiol. 2019;29(8):4495-502. DOI: https://doi.org/10.1007/s00330-018-5963-4
Unthan M, Ullrich BW, Heinen C, Felix CK, Philipp S, Tobias F, et al. Comparison of spectral CT and MRI in pelvic ring fragility fractures: a prospective diagnostic accuracy study. J Clin Med. 2024;13(18):5446. DOI: https://doi.org/10.3390/jcm13185446
Radcliff K, Kepler C, Reitman C, James H, Alexander V. CT and MRI-based diagnosis of craniocervical dislocations: the role of the occipitoatlantal ligament. Clin Orthop Relat Res. 2012;470(6):1602-13. DOI: https://doi.org/10.1007/s11999-011-2151-0
Sedaghat S, Langguth P, Larsen N, Graeme C, Marcus B, Olav J. Diagnostic accuracy of dual-layer spectral CT using electron density images to detect post-traumatic prevertebral hematoma of the cervical spine. Rofo. 2021;193(12):1445-50. DOI: https://doi.org/10.1055/a-1529-7010
Bäcker HC, Wu CH, Perka C, Panics G. Dual-energy computed tomography in spine fractures: a systematic review and meta-analysis. Int J Spine Surg. 2021;15(3):525-35. DOI: https://doi.org/10.14444/8074
Fujii Y, Muragaki Y, Maruyama T, Masayuki N, Taiichi S, Soko I, et al. Threshold of the extent of resection for WHO Grade III gliomas: retrospective volumetric analysis of 122 cases using intraoperative MRI. J Neurosurg. 2018;129(1):1-9. DOI: https://doi.org/10.3171/2017.3.JNS162383
Muchow RD, Resnick DK, Abdel MP, Alejandro M, Paul AA. Magnetic resonance imaging (MRI) in the clearance of the cervical spine in blunt trauma: a meta-analysis. J Trauma. 2008;64(1):179-89. DOI: https://doi.org/10.1097/01.ta.0000238664.74117.ac
Roy AK, Miller BA, Holland CM, Arthur JF Jr, Gustavo P, Faiz UA. Magnetic resonance imaging of traumatic injury to the craniovertebral junction: a case-based review. Neurosurg Focus. 2015;38(4):E3. DOI: https://doi.org/10.3171/2015.1.FOCUS14785
Xiao M, Zhang M, Lei M, Fenghuan L, Yanxia C, Jun C, et al. Diagnostic accuracy of ultra-low-dose CT compared to standard-dose CT for identification of non-displaced fractures of the shoulder, knee, ankle, and wrist. Insights Imaging. 2023;14(1):40. DOI: https://doi.org/10.1186/s13244-023-01389-7
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp. 2024;8(1):73. DOI: https://doi.org/10.1186/s41747-024-00472-y
Onciul R, Tataru CI, Dumitru AV, Carla C, Matei S, Razvan-Adrian CB, et al. Artificial intelligence and neuroscience: transformative synergies in brain research and clinical applications. J Clin Med. 2025;14(2):550. DOI: https://doi.org/10.3390/jcm14020550
Romero AR, Herrera ARR, Cuellar JFS. Pioneering augmented and mixed reality in cranial surgery: the first Latin American experience. Brain Sci. 2024;14(10):1025. DOI: https://doi.org/10.3390/brainsci14101025
Harada T, Kudo K, Fujima N, Masato Y, Yohei I, Ryota S, et al. Quantitative susceptibility mapping: basic methods and clinical applications. Radiographics. 2022;42(4):1161-76. DOI: https://doi.org/10.1148/rg.210054
Arnold TC, Freeman CW, Litt B, Stein JM. Low‐field MRI: clinical promise and challenges. J Magn Reson Imaging. 2023;57(1):25-44. DOI: https://doi.org/10.1002/jmri.28408
Li HM, Zhang RJ, Shen CL. Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine. 2020;45(2):E111-9. DOI: https://doi.org/10.1097/BRS.0000000000003193
Florkow MC, Willemsen K, Mascarenhas VV, Edwin HGO, Marijn van S, Peter RS. Magnetic resonance imaging versus computed tomography for three‐dimensional bone imaging of musculoskeletal pathologies: a review. J Magn Reson Imaging. 2022;56(1):11-34. DOI: https://doi.org/10.1002/jmri.28067
Silva MA, See AP, Essayed WI, Alexandra JG, Yanmei T. Challenges and techniques for presurgical brain mapping with functional MRI. Neuroimage Clin. 2017;17:794-803. DOI: https://doi.org/10.1016/j.nicl.2017.12.008
Van Wee B. Accessible accessibility research challenges. J Transp Geogr. 2016;51:9-16. DOI: https://doi.org/10.1016/j.jtrangeo.2015.10.018
Saboury B, Morris M, Siegel E. Future directions in artificial intelligence. Radiol Clin North Am. 2021;59(6):1085-95. DOI: https://doi.org/10.1016/j.rcl.2021.07.008