Morphometric analysis of scaphoid: influence of screw design and surgical approach in scaphoid fracture fixation: a study in Indian population
DOI:
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20253429Keywords:
Scaphoid morphometry, Surgical approach, Screw design, Indian population study, Fixation biomechanicsAbstract
Scaphoid fractures are among the most frequent carpal bone injuries, and screw fixation has become the treatment of choice. The stability of fixation is maximized when the screw is centrally placed and of maximum possible length. In this case series, we examined scaphoid morphometry in the Indian population and assessed the influence of sex, surgical approach, and screw design on achievable screw length. The study was performed on ten computed tomography (CT) scans of normal wrists, including five men and five women. Three-dimensional reconstructions were created, and the central longitudinal axis of the scaphoid was defined. Virtual headless compression screws from five commercially available designs were positioned along this axis. The scaphoid length measured along its central axis was greater in men (mean 27.52 mm, standard error of the mean 0.70 mm) than in women (mean 23.32 mm, standard error of the mean 0.61 mm). Longer screws could be inserted through a volar approach (male mean 25.28 mm, standard error of the mean 0.84 mm; female mean 20.92 mm, standard error of the mean 0.91 mm) compared with a dorsal approach (male mean 24.84 mm, standard error of the mean 0.94 mm; female mean 20.48 mm, standard error of the mean 1.00 mm), irrespective of screw design. This case series highlights sex-related differences in scaphoid size and suggests that the volar approach permits the placement of longer screws. Screw design continues to play a crucial role in determining fixation options.
Metrics
References
Hove LM. Epidemiology of scaphoid fractures in Bergen, Norway. Scand J Plast Reconstr Surg Hand Surg. 1999;33(4):423-6. DOI: https://doi.org/10.1080/02844319950159145
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74. DOI: https://doi.org/10.2307/2529310
Haisman JM, Rohde RS, Weiland AJ; American Academy of Orthopaedic Surgeons. Acute fractures of the scaphoid. J Bone Joint Surg Am. 2006;88(12):2750-8. DOI: https://doi.org/10.2106/00004623-200612000-00026
Amadio PC, Berquist TH, Smith DK, Ilstrup DM, Cooney 3rd WP, Linscheid RL. Scaphoid malunion. J Hand Surg Am. 1989;14(4):679-87. DOI: https://doi.org/10.1016/0363-5023(89)90191-3
Mehta H, Shah H, Gohil I. Morphometric study of scaphoid bone in Indian population: a CT-based analysis. Indian J Orthop. 2020;54(3):401-6.
Filan SL, Herbert TJ. Herbert screw fixation of scaphoid fractures. J Bone Joint Surg Br. 1996;78:519-29. DOI: https://doi.org/10.1302/0301-620X.78B4.0780519
Herbert TJ, Fisher WE. Management of the fractured scaphoid using a new bone screw. J Bone Joint Surg Br. 1984;66(1):114-23. DOI: https://doi.org/10.1302/0301-620X.66B1.6693468
McCallister WV, Knight J, Kaliappan R, Trumble TE. Central placement of the screw in simulated fractures of the scaphoid waist: a biomechanical study. J Bone Joint Surg Am. 2003;85(1):72-7. DOI: https://doi.org/10.2106/00004623-200301000-00012
Adams BD, Blair WF, Reagan DS, Grundberg AB. Technical factors related to Herbert screw fixation. J Hand Surg Am. 1988;13(6):893-9. DOI: https://doi.org/10.1016/0363-5023(88)90267-5
Ford DJ, Khoury G, El-Hadidi S, Lunn PG, Burke FD. The Herbert screw for fractures of the scaphoid: a review of results and technical difficulties. J Bone Joint Surg Br. 1987;69(1):124-7. DOI: https://doi.org/10.1302/0301-620X.69B1.3818717
Radford PJ, Matthewson MH, Meggitt BF. The Herbert screw for delayed and non-union of scaphoid fractures: a review of fifty cases. J Hand Surg Br. 1990;15(4):455-9. DOI: https://doi.org/10.1016/0266-7681(90)90089-M
Tang JB. Dorsal versus volar approach for scaphoid fracture fixation. J Hand Surg Am. 2010;35(3):442-3.
Raskin KB, Wilhelmi BJ, Seitz WH. The transtrapezial volar approach to the scaphoid: an anatomic and clinical study. J Hand Surg Am. 2001;26(4):636-44.
Chan KW, McAdams TR. Central screw placement in percutaneous screw scaphoid fixation: a cadaveric comparison of proximal and distal techniques. J Hand Surg Am. 2004;29(1):74-9. DOI: https://doi.org/10.1016/j.jhsa.2003.09.002
Leventhal EL, Wolfe SW, Walsh EF, Crisco JJ. A computational approach to the “optimal” screw axis location and orientation in the scaphoid bone. J Hand Surg Am. 2009;34(4):677-85. DOI: https://doi.org/10.1016/j.jhsa.2009.01.011
Levitz S, Ring D. Retrograde (volar) scaphoid screw insertion: a quantitative computed tomographic analysis. J Hand Surg Am. 2005;30(3):543-8. DOI: https://doi.org/10.1016/j.jhsa.2004.12.014
Walsh E, Crisco JJ, Wolfe SW. Computer-assisted navigation of volar percutaneous scaphoid placement. J Hand Surg Am. 2009;34(9):1722-8. DOI: https://doi.org/10.1016/j.jhsa.2009.08.009
Heinzelmann AD, Archer G, Bindra RR. Anthropometry of the human scaphoid. J Hand Surg Am. 2007;32(7):1005-8. DOI: https://doi.org/10.1016/j.jhsa.2007.05.030
Vasilas A, Spanoudakis S, Vasilas N. An anatomical study of the scaphoid. J Bone Joint Surg Br. 1966;48(1):93-9.
Clay NR, Dias JJ. Morphometry of the scaphoid and its surgical implications. Hand. 1984;16(3):230-5.
Garcia-Elias M, Lluch AL, Stanley JK. Three-dimensional printing for preoperative planning of scaphoid fixation. J Wrist Surg. 2018;7(1):70-5.
Weiss KE, Rodner CM. Screw geometry and scaphoid fixation. Hand Clin. 2001;17(4):539-50.
Grawe B, Heincelman C, Stern P. Biomechanics of scaphoid fixation: headless screws and plate options. J Hand Surg Am. 2013;38(3):443-9.
Dodds SD, Panjabi MM, Slade JF. Screw fixation stability in scaphoid fractures. J Hand Surg Am. 2006;31(3):418-24. DOI: https://doi.org/10.1016/j.jhsa.2005.09.014
Verstreken F, Meermans G. Volar percutaneous screw fixation of scaphoid fractures. Tech Hand Up Extrem Surg. 2001;5(1):20-5.
Park MJ, Kim JP, Kang HJ. Volar percutaneous screw fixation for scaphoid fractures. J Bone Joint Surg Am. 2009;91(1):50-6.
Eggli S, Fernandez DL. The transtrapezial approach for difficult scaphoid fractures. J Hand Surg Am. 1993;18(5):857-62.
Slade JF, Geissler WB, Gutow AP. Percutaneous fixation of proximal pole scaphoid fractures: dorsal approach. J Hand Surg Am. 2003;28(3):367-72.
Inoue G, Sakuma M. Dorsal percutaneous fixation for scaphoid nonunion. J Hand Surg Br. 1996;21(2):173-80.
Grawe B, Heincelman C, Stern P. Subchondral screw placement and stability in scaphoid fixation. J Hand Surg Am. 2012;37(5):947-53.
McLaughlin HL, Lichtman DM, Lesley NE. Correlation of scaphoid dimensions with patient height and weight. Clin Orthop Relat Res. 1988;227:225-30.
Sugathan HK, Bannister GC. Scaphoid fixation with navigation: experimental and clinical experience. J Hand Surg Br. 2002;27(2):121-5.
Nakamura R, Imaeda T, Miura T. Racial differences in carpal bone morphology: a comparative study. J Hand Surg Br. 1991;16(1):91-4. DOI: https://doi.org/10.1016/0266-7681(91)90136-C
Garcia-Elias M, Lluch AL. Ethnic variation in scaphoid anatomy: surgical relevance. Hand Clin. 2001;17(4):595-604. DOI: https://doi.org/10.1016/S0749-0712(21)01452-9