Magnetic resonance imaging knee joint measurements for the prediction of the population at risk of anterior cruciate ligament tear injuries
DOI:
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20250033Keywords:
Anterior cruciate ligament, Magnetic resonance imaging, Medial meniscusAbstract
Background: This study aims to investigate whether patient-related anterior cruciate ligament (ACL) damage is associated with measures of various knee joint components.
Methods: Patients who had magnetic resonance imaging (MRI) and suffered from ACL injuries were included in this retrospective case-control study. There was also a control group of individuals who had normal MRI results for knee diseases. The following 14 knee variables were gathered: lateral and medial (MFC) femoral condyle sphere diameter; lateral and medial tibial plateau length; patella tendon horizontal and vertical diameter; lateral meniscus (LM) posterior horn height, length, depth, and volume; and medial meniscus (MM) posterior horn height, length, depth, and volume. The two groups were compared using a multivariate logistic regression that took into account the patella tendon horizontal diameter, MFC sphere diameter, MM posterior horn length, MM volume, LM posterior horn depth, and receiver operating characteristic curve.
Results: We enrolled 98 patients in total; 48 had ACL injuries, and 50 had normal knee MRIs as a comparison group. The results of the logistic regression analysis showed that the following factors independently predicted the risk of ACL rupture: decreased MM posterior horn length (OR=0.45; 95% CI=0.33-0.630; p<0.001), increased LM posterior horn depth (OR=1.78; 95% CI=1.37- 2.03; p<0.001), and MFC sphere diameter (OR=1.27; 95% CI=1.01-1.60; p=0.0354).
Conclusions: Individuals with an ACL injury had shorter MM posterior horns, deeper LM posterior horns, larger MFC sphere diameters.
Metrics
References
Petersen W, Zantop T. Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res. 2007;454:35-47. DOI: https://doi.org/10.1097/BLO.0b013e31802b4a59
Lee K, Siegel MJ, Lau DM, Hildebolt CF, Matava MJ. Anterior cruciate ligament tears: MR imaging-based diagnosis in a pediatric population. Radiology. 1999;213:697-704. DOI: https://doi.org/10.1148/radiology.213.3.r99dc26697
Purnell ML, Larson AI, Clancy W. Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med. 2008;36:2083-90. DOI: https://doi.org/10.1177/0363546508319896
Evans J, Nielson Jl. Anterior cruciate ligament knee injuries. StatPearls Publishing. 2021.
Hernández LM, Micheo WF, Amy E. Rehabilitation update for the anterior cruciate ligament injured patient: current concepts. Bol Asoc Med P R. 2006;98(1):62-72.
Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ. Sport- specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med. 2016;44:2716-23. DOI: https://doi.org/10.1177/0363546515617742
Trentacosta NE, Vitale MA, Ahmad CS. The effects of timing of pediatric knee ligament surgery on short-term academic performance in school- aged athletes. Am J Sports Med. 2009;37:1684-91. DOI: https://doi.org/10.1177/0363546509332507
Arundale AJH, Silvers-Granelli HJ, Snyder-Mackler L. Career Length and Injury Incidence After Anterior Cruciate Ligament Reconstruction in Major League Soccer Players. Orthop J Sports Med. 2018;6(1):2325967117750825. DOI: https://doi.org/10.1177/2325967117750825
Lohmander LS, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum. 2004;50:3145-52. DOI: https://doi.org/10.1002/art.20589
Boden BP, Dean CS, Feagin JA, Garrett WE. Mechanisms of anterior cruci- ate ligament injury. Orthopedics. 2000;23:573-8. DOI: https://doi.org/10.3928/0147-7447-20000601-15
Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S, et al. Risk factors for anterior cruciate ligament injury: a review of the literature-part 2: hormonal, genetic, cognitive function, previous injury, and extrinsic risk factors. Sports Health. 2012;4(2):155-61. DOI: https://doi.org/10.1177/1941738111428282
Smith HC, Vacek P, Johnson RJ, Slauterbeck JR, Hashemi J, Shultz S, et al. Risk factors for anterior cruciate ligament injury: a review of the literature - part 1: neuromuscular and anatomic risk. Sports Health. 2012;4(1):69-78. DOI: https://doi.org/10.1177/1941738111428281
Di Stasi S, Myer GD, Hewett TE. Neuromuscular training to target deficits associated with second anterior cruciate ligament injury. J Orthop Sports Phys Ther. 2013;43:777-92. DOI: https://doi.org/10.2519/jospt.2013.4693
Gilchrist J, Mandelbaum BR, Melancon H, Ryan GW, Silvers HJ, Griffin LY, et al. A randomized controlled trial to prevent noncontact anterior cruciate ligament injury in female collegiate soccer players. Am J Sports Med. 2008;36(8):1476-83. DOI: https://doi.org/10.1177/0363546508318188
Swart E, Redler L, Fabricant PD, Mandelbaum BR, Ahmad CS, Wang YC. Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. J Bone Joint Surg Am. 2014;96:705. DOI: https://doi.org/10.2106/JBJS.M.00560
Park JS, Nam DC, Kim DH, Kim HK, Hwang SC. Measurement of knee morphometrics using MRI: a comparative study between ACL-injured and non-injured knees. Knee Surg Relat Res. 2012;24:180-5. DOI: https://doi.org/10.5792/ksrr.2012.24.3.180
Vrooijink SHA, Wolters F, Van Eck CF, Fu FH. Measurements of knee mor- phometrics using MRI and arthroscopy: a comparative study between ACL-injured and non-injured subjects. Knee Surg Sports Traumatol Arthrosc. 2011;19:12-6. DOI: https://doi.org/10.1007/s00167-011-1502-4
Pfeiffer TR, Burnham JM, Kanakamedala AC, Hughes JD, Zlotnicki J, Popchak A, et al. Distal femur morphology affects rotatory knee instability in patients with anterior cruciate ligament ruptures. Knee Surg Sports Traumatol Arthrosc. 2019;27(5):1514-9. DOI: https://doi.org/10.1007/s00167-018-5269-8
Vasta S, Andrade R, Pereira R, Bastos R, Battaglia AG, Papalia R, et al. Bone morphology and morphometry of the lateral femoral condyle is a risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc. 2018;26(9):2817-25. DOI: https://doi.org/10.1007/s00167-017-4761-x
Suprasanna K, Chamala T, Kumar A. Comparison of anatomical risk factors for noncontact anterior cruciate ligament injury using magnetic reso- nance imaging. J Clin Orthop Trauma. 2019;10:143-8. DOI: https://doi.org/10.1016/j.jcot.2017.08.002
Araujo P, van Eck CF, Torabi M, Fu FH. How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2013;21:1495. DOI: https://doi.org/10.1007/s00167-012-2153-9
Bahr R, Krosshaug T. Understanding injury mechanisms: a key component of preventing injuries in sport. Br J Sports Med. 2005;39:324-9. DOI: https://doi.org/10.1136/bjsm.2005.018341
Domzalski M, Grzelak P, Gabos P. Risk factors for anterior cruciate ligament injury in skeletally immature patients: analysis of intercondylar notch width using magnetic resonance imaging. Int Orthop. 2010;34:703-7. DOI: https://doi.org/10.1007/s00264-010-0987-7
Lahlaïdi A. Morphological value of posterior insertion of the external meniscus in the human knee. Revue de chirurgie orthopedique et reparatrice de l’appareil moteur. 1971;57:593-600.
Zemirline A, Gérard R, Uguen A, Stindel E, Dubrana F. Meniscoligamen- tous band between the posterior horn of the lateral meniscus and the anterior cruciate ligament: arthroscopic, anatomical and histological observations. Surg Radiol Anat. 2010;32:129-33. DOI: https://doi.org/10.1007/s00276-009-0565-0
Koc BB, Jansen EJP, van Dijk P, Emans PJ, Lataster A. Mechanoreceptors observed in a ligamentous structure between the posterior horn of the lateral meniscus and the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2021;29:1701-8. DOI: https://doi.org/10.1007/s00167-020-06191-2
Hamdan M, Haddad B, Alshrouf MA, Azzam MI, Isleem U, Hamasha R, et al. Can MRI knee joint measurements predict the population at risk of ACL injury? BMC Sports Sci Med Rehabil. 2022;14:98. DOI: https://doi.org/10.1186/s13102-022-00495-1
Blanke F, Kiapour AM, Haenle M, Fischer J, Majewski M, Vogt S, et al. Risk of noncontact anterior cruciate ligament injuries is not associated with slope and concavity of the tibial plateau in recreational alpine skiers: a magnetic resonance imaging-based case-control study of 121 patients. Am J Sports Med. 2016;44:1508-14.
Englander ZA, Cutcliffe HC, Utturkar GM, Taylor KA, Spritzer CE, Garrett WE, et al. In vivo assessment of the interaction of patellar tendon tibial shaft angle and anterior cruciate ligament elongation during flexion. J Biomech. 2019;90:123-7. DOI: https://doi.org/10.1016/j.jbiomech.2019.04.034
Blanke F, Kiapour AM, Haenle M, Fischer J, Majewski M, Vogt S, et al. Risk of noncontact anterior cruciate ligament injuries is not associated with slope and concavity of the tibial plateau in recreational alpine skiers: a magnetic resonance imaging-based case-control study of 121 patients. Am J Sports Med. 2016;44:1508-14. DOI: https://doi.org/10.1177/0363546516632332
Rahnemai-Azar AA, Yaseen Z, van Eck CF, Irrgang JJ, Fu FH, Musahl V. Increased lateral tibial plateau slope predisposes male college football players to anterior cruciate ligament injury. J Bone Joint Surg Am. 2016;98:1001-6. DOI: https://doi.org/10.2106/JBJS.15.01163
Grassi A, Macchiarola L, Urrizola Barrientos F, Zicaro JP, Costa Paz M, Adravanti P, et al. Steep posterior tibial slope, anterior tibial subluxation, deep posterior lateral femoral condyle, and meniscal deficiency are common findings in multiple anterior cruciate ligament failures: an MRI case-control study. Am J Sports Med. 2019;47:285-95. DOI: https://doi.org/10.1177/0363546518823544
Hashemi J, Chandrashekar N, Mansouri H, Gill B, Slauterbeck JR, Schutt RCJ, et al. Shallow medial tibial plateau and steep medial and lateral tibial slopes: new risk factors for anterior cruciate ligament injuries. Am J Sports Med. 2010;38:54-62. DOI: https://doi.org/10.1177/0363546509349055