Allograft sterilization and processing: impact on biomechanical strength
DOI:
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20240441Keywords:
ACL, Reconstruction, Allografts, Sterilization, Gamma radiation, Electron beamAbstract
The allograft used for anterior cruciate ligament reconstruction (ACLR) must posses good biomechanical properties and it should have similar properties to the original tendon. During reconstruction the allograft must undergo proper sterilization and several sterilization methods have been used in the clinical practice. There are varations in the sterilization process and it has significant impact on the allograft tissue performance during ACL reconstruction. It is advisable to refrain from utilising grafts that have been exposed to radiation doses exceeding 15 kGy, as well as grafts that have undergone more than eight freeze-thaw cycles. Gamma radiation has disadvantages when compared to electron beam radiation in term of loss of mechanical strength.
References
Kaeding CC, Léger-St-Jean B, Magnussen RA. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin Sports Med. 2017;36(1):1-8.
Prokopis PM, Schepsis AA. Allograft use in ACL reconstruction. Knee. 1999;6(2):75-85.
Scheffler SU, Unterhauser FN, Weiler A. Graft remodeling and ligamentization after cruciate ligament reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2008;16(9):834-42.
Hulet C, Sonnery-Cottet B, Stevenson C, Samuelsson K, Laver L, Zdanowicz U et al. The use of allograft tendons in primary ACL reconstruction. Knee Surgery, Sport Traumatol Arthrosc. 2019;27(6):1754-70.
Goetz G, De Villiers C, Sadoghi P, Geiger-Gritsch S. Allograft for Anterior Cruciate Ligament Reconstruction (ACLR): A Systematic Review and Meta-Analysis of Long-Term Comparative Effectiveness and Safety. Results of a Health Technology Assessment. Arthrosc Sport Med Rehabil. 2020;2(6):e873-91.
Lind DRG, Patil RS, Amunategui MA, DePhillipo NN. Evolution of anterior cruciate ligament reconstruction & graft choice: a review. Ann Jt. 2023;8:19.
Farago D, Kozma B, Kiss RM. Different sterilization and disinfection methods used for human tendons-a systematic review using mechanical properties to evaluate tendon allografts. BMC Musculoskelet Disord. 2021;22(1):404.
Jackson DW, Windler GE, Simon TM. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. Am J Sports Med. 1990;18(1):1-10.
Drez DJ, DeLee J, Holden JP, Arnoczky S, Noyes FR, Roberts TS. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts. A biological and biomechanical evaluation in goats. Am J Sports Med. 1991;19(3):256-63.
Scheffler SU, Gonnermann J, Kamp J, Przybilla D, Pruss A. Remodeling of ACL Allografts is Inhibited by Peracetic Acid Sterilization. Clin Orthop Relat Res. 2008;466(8):1810-8.
Scheffler SU, Scherler J, Pruss A, von Versen R, Weiler A. Biomechanical comparison of human bone-patellar tendon-bone grafts after sterilization with peracetic acid ethanol. Cell Tissue Bank. 2005;6(2):109-15.
Dong S, Huangfu X, Xie G, Zhang Y, Shen P, Li X et al. Decellularized Versus Fresh-Frozen Allografts in Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2015;43(8):1924-34.
Mikhael MM, Huddleston PM, Zobitz ME, Chen Q, Zhao KD, An KN. Mechanical strength of bone allografts subjected to chemical sterilization and other terminal processing methods. J Biomech. 2008;41(13):2816-20.
Jones DB, Huddleston PM, Zobitz ME, Stuart MJ. Mechanical Properties of Patellar Tendon Allografts Subjected to Chemical Sterilization. Arthrosc J Arthrosc Relat Surg. 2007;23(4):400-4.
Indelicato PA, Ciccotti MG, Boyd J, Higgins LD, Shaffer BS, Vangsness CT. Aseptically processed and chemically sterilized BTB allografts for anterior cruciate ligament reconstruction: a prospective randomized study. Knee Surgery, Sport Traumatol Arthrosc. 2013;21(9):2107-12.
Tallentire A. The spectrum of microbial radiation sensitivity. Radiat Phys Chem. 1980;15(1):83-9.
Nguyen H, Morgan DAF, Forwood MR. Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank. 2007;8(2):93-105.
Moreau MF, Gallois Y, Baslé MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials. 2000;21(4):369-76.
Cornu O, Boquet J, Nonclercq O, Docquier PL, Van Tomme J, Delloye C et al. Synergetic effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. Cell Tissue Bank. 2011;12(4):281-8.
Curran AR, Adams DJ, Gill JL, Steiner ME, Scheller AD. The biomechanical effects of low-dose irradiation on bone-patellar tendon-bone allografts. Am J Sports Med. 2004;32(5):1131-5.
Bhatia S, Bell R, Frank RM, Rodeo SA, Bach BR, Cole BJ et al. Bony Incorporation of Soft Tissue Anterior Cruciate Ligament Grafts in an Animal Model. Am J Sports Med. 2012;40(8):1789-98.
Lansdown DA, Riff AJ, Meadows M, Yanke AB, Bach BR. What Factors Influence the Biomechanical Properties of Allograft Tissue for ACL Reconstruction? A Systematic Review. Clin Orthop Relat Res. 2017;475(10):2412-26.
Balsly CR, Cotter AT, Williams LA, Gaskins BD, Moore MA, Wolfinbarger L. Effect of low dose and moderate dose gamma irradiation on the mechanical properties of bone and soft tissue allografts. Cell Tissue Bank. 2008;9(4):289-98.
Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C et al. Fractionation of high-dose electron beam irradiation of BPTB grafts provides significantly improved viscoelastic and structural properties compared to standard gamma irradiation. Cell Tissue Bank. 2015;16(2):219-26.
Hoburg A, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C et al. High-dose electron beam sterilization of soft-tissue grafts maintains significantly improved biomechanical properties compared to standard gamma treatment. Cell Tissue Bank. 2015;16(2):219-26.
Macaulay AA, Perfetti DC, Levine WN. Anterior Cruciate Ligament Graft Choices. Sport Heal A Multidiscip Approach. 2012;4(1):63-8.
Sun K, Tian S, Zhang J, Xia C, Zhang C, Yu T. Anterior cruciate ligament reconstruction with BPTB autograft, irradiated versus non-irradiated allograft: a prospective randomized clinical study. Knee Surg Sports Traumatol Arthrosc. 2009;17(5):464-74.
Rappé M, Horodyski M, Meister K, Indelicato PA. Nonirradiated versus irradiated Achilles allograft: in vivo failure comparison. Am J Sports Med. 2007;35(10):1653-8.
Guo L, Yang L, Duan XJ, He R, Chen GX, Wang F et al. Anterior Cruciate Ligament Reconstruction With Bone–Patellar Tendon–Bone Graft: Comparison of Autograft, Fresh-Frozen Allograft, and γ-Irradiated Allograft. Arthrosc J Arthrosc Relat Surg. 2012;28(2):211-7.
Kan SL, Yuan ZF, Ning GZ, Yang B, Li HL, Sun JC et al. Autograft versus allograft in anterior cruciate ligament reconstruction. Medicine (Baltimore). 2016;95(38):e4936.
Maletis GB, Chen J, Inacio MCS, Love RM, Funahashi TT. Increased Risk of Revision After Anterior Cruciate Ligament Reconstruction With Soft Tissue Allografts Compared With Autografts: Graft Processing and Time Make a Difference. Am J Sports Med. 2017;45(8):1837-44.
Schmidt T, Hoburg AT, Gohs U, Schumann W, Sim-Brandenburg JW, Nitsche A et al. Inactivation Effect of Standard and Fractionated Electron Beam Irradiation on Enveloped and Non-Enveloped Viruses in a Tendon Transplant Model. Transfus Med Hemotherapy. 2012;39(1):29-35.
Hoburg AT, Keshlaf S, Schmidt T, Smith M, Gohs U, Perka C et al. Effect of Electron Beam Irradiation on Biomechanical Properties of Patellar Tendon Allografts in Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2010;38(6):1134-40.
Bottino MC, Jose MV, Thomas V, Dean DR, Janowski GM. Freeze-dried acellular dermal matrix graft: Effects of rehydration on physical, chemical, and mechanical properties. Dent Mater. 2009;25(9):1109-15.
Indelicato PA, Bittar ES, Prevot TJ, Woods GA, Branch TP, Huegel M. Clinical comparison of freeze-dried and fresh frozen patellar tendon allografts for anterior cruciate ligament reconstruction of the knee. Am J Sports Med. 1990;18(4):335-42.
Samsell B, Softic D, Qin X, McLean J, Sohoni P, Gonzales K et al. Preservation of allograft bone using a glycerol solution: a compilation of original preclinical research. Biomater Res. 2019;23(1):5.
Gut G, Marowska J, Jastrzebska A, Olender E, Kamiński A. Structural mechanical properties of radiation-sterilized human Bone-Tendon-Bone grafts preserved by different methods. Cell Tissue Bank. 2016;17(2):277-87.
Zimmerman MC, Contiliano JH, Parsons JR, Prewett A, Billotti J. The Biomechanics and Histopathology of Chemically Processed Patellar Tendon Allografts for Anterior Cruciate Ligament Replacement. Am J Sports Med. 1994;22(3):378-86.
Nyland J, Larsen N, Burden R, Chang H, Caborn DNM. Biomechanical and tissue handling property comparison of decellularized and cryopreserved tibialis anterior tendons following extreme incubation and rehydration. Knee Surgery, Sport Traumatol Arthrosc. 2009;17(1):83-91.
Suhodolčan L, Brojan M, Kosel F, Drobnič M, Alibegović A, Brecelj J. Cryopreservation with glycerol improves the in vitro biomechanical characteristics of human patellar tendon allografts. Knee Surgery, Sport Traumatol Arthrosc. 2013;21(5):1218-25.