Supervised machine learning algorithms used to predict post-surgical outcomes following anterior surgical fixation of odontoid fractures
DOI:
https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20240402Keywords:
ML, Odontoid fracture, Anterior odontoid screw fixation, HematocritAbstract
Background: Odontoid fractures have a high mortality rate, and numerous classification systems have previously predicted surgical outcomes with mixed consensus. We generated a machine learning (ML) construct to predict post-operative adverse events following anterior (ORIF) of odontoid fractures.
Methods: 266 patients from the American college of surgeons-national surgical quality improvement program (ACS-NSQIP) with anterior ORIF (CPT 22318) of odontoid fractures from 2008-2018 were analyzed using ML algorithms random forest classifier (RF), gradient boosting classifier (GB), support vector machine classifier (SVM), Gaussian Naive Bayes classifier (GNB), and multi-layer perceptron classifier (MLP), and were compared to logistic regression classifier (LR). Algorithms predicted increased length of stay (LOS), need for transfusion (Transf), non-home discharge (NHD), and any adverse event (AAE). Permutation feature importance (PFI) identified risk factors.
Results: ML algorithms outperformed LR. The average AUC for predicting Transf was 0.635 (accuracy=77.4%), extended LOS=0.652 (accuracy 59.6%), NHD 0.788 (accuracy=71.9%) and AAE 0.649 (accuracy 68.1%). GB performed highest for Transf (AUC=0.861), identifying operative time (PFI 0.253, p=0.016). GB and RF performed equally for NHD (AUC=0.819), highlighting preoperative hematocrit (PFI=0.157, p<0.001). GB predicted AAE (AUC=0.720) also identifying preoperative hematocrit (PFI=0.112, p<0.001). RF predicted extended LOS (AUC=0.669) highlighting preoperative hematocrit (PFI=0.049, p<0.001).
Conclusions: ML outperformed LR, successfully predicting Transf, extended LOS, NHD, and AAE for anterior ORIF of odontoid fractures. Our construct may complement conventional risk stratification to reduce adverse outcomes and excess cost.
References
Delcourt T, Begue T, Saintyves G, Mebtouche N, Cottin P. Management of upper cervical spine fractures in elderly patients: current trends and outcomes. Injury. 2015;46(1):S24-7.
Carvalho AD, Figueiredo J, Schroeder GD, Vaccaro AR, Rodrigues-Pinto R. Odontoid fractures- a critical review of current management and future directions. Clin Spine Surg. 2019;32(8):1-11.
Bajada S, Ved A, Dudhniwala AG, Ahuja S. Predictors of mortality following conservatively managed fractures of the odontoid in elderly patients. Bone Joint J. 2017;99-B(1):116-21.
Heggeness MH, Doherty BJ. The trabecular anatomy of the axis. Spine (Phila Pa 1976). 1993;18(14):1945-9.
Watanabe M, Saai D, Yamamoto Y, Sato M, Mochida J. Upper cervical spine injuries: age-specific clinical features. J Orthop Sci. 2010;15(4):485-92.
Apfelbaum RI, Lonser RR, Veres R, Casey A. Direct anterior screw fixation for recent and remote odontoid fractures. J Neurosurg. 2000;93(2):227-36.
Texakalidis P, Matsoukas S, Karras CL, Hyman GF, Kevin S, Geoffrey PS et al. Outcomes following anterior odontoid screw versus posterior arthrodesis for odontoid fractures: a systematic review and meta-analysis. J Neurosurg Spine. 2023;39(2):196-205.
Wittauer M, Burch MA, McNally M, Thomas V, Martin C, Gregory JDR et al. Definition of long-bone nonunion: A scoping review of prospective clinical trials to evaluate current practice. Injury. 2021;52(11):3200-5.
Dhall SS, Yue JK, Winkler EA, Mummaneni PV, Manley GT, Tarapore PE. Morbidity and Mortality Associated with Surgery of Traumatic C2 Fractures in Octogenarians. Neurosurgery. 2017;80(6):854-62.
Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: progress in machine intelligence for rational drug discovery. Drug Discov Today. 2017;22(11):1680-85.
Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine Learning for Medical Imaging. Radiographics. 2017;37(2):505-15.
El Naqa I, Ruan D, Valdes G, Andre D, Todd McN, Yaorong G et al. Machine learning and modeling: Data, validation, communication challenges. Med Phys. 2018;45(10):e834-40.
De Bonis P, Iaccarino C, Musio A, Antonio M, Federico DI, Roberto D et al. Functional Outcome of Elderly Patients Treated for Odontoid Fracture: A Multicenter Study. Spine (Phila Pa 1976). 2019;44(13):951-8.
Carlstrom LP, Helal A, Perry A, Lakomkin N, Graffeo CS, Clarke MJ. Too frail is to fail: Frailty portends poor outcomes in the elderly with type II odontoid fractures independent of management strategy. J Clin Neurosci. 2021;93:48-53.
Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920-30.
Rajput D, Wang WJ, Chen CC. Evaluation of a decided sample size in machine learning applications. BMC Bioinformatics. 2023;24(1):48.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825-30.
Van Rossum G, Drake FL. Python 3 Reference Manual. CreateSpace. 2009.
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 2011;12:2825-30.
Smith JS, Kepler CK, Kopjar B, James SH, Paul A, Jens RC et al. Effect of type II odontoid fracture nonunion on outcome among elderly patients treated without surgery: based on the AOSpine North America geriatric odontoid fracture study. Spine (Phila Pa 1976). 2013;38(26):2240-46.
User Guide for the 2017 ACS NSQIP. 2018.
Shi SM, McCarthy EP, Mitchell SL, Kim DH. Predicting Mortality and Adverse Outcomes: Comparing the Frailty Index to General Prognostic Indices. J Gen Intern Med. 2020;35(5):1516-22.
Feghali J, Gami A, Rapaport S, Jaimin P, Adham MK, Sakibul H et al. Adapting the 5-factor modified frailty index for prediction of postprocedural outcome in patients with unruptured aneurysms. J Neurosurg. 2021;136(2):456-63.
Gholamy A, Kreinovich V, Kosheleva O. Why 70/30 or 80/20 Relation Between Training and Testing Sets: A Pedagogical Explanation. University of Texas at El Paso. ScholarWorks@UTEP. 2018;1-6.
Yu T, Zhu H. Hyper-parameter optimization: a review of algorithms and applications. arXiv. 2020.
Zhou J, Gandomi AH, Chen F, Holzinger A. Evaluating the Quality of Machine Learning Explanations: A Survey on Methods and Metrics. Electronics. 2021;10(5):593.
Hosmer DW, Lemeshow S. Applied logistic regression, 2nd ed. Wiley. 2000;156-64.
Shreffler J, Huecker MR. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023.
Hunter JD. Matplotlib: A 2D Graphics Environment. Computing Sci Engin. 2007;9(3):90-95.
Hak DJ, Fitzpatrick D, Bishop JA, Lawrence JM, Susanne T, Reinhard S et al. Delayed union and nonunions: epidemiology, clinical issues, and financial aspects. Injury. 2014;45(2):S3-7.
Patterson JT, Theologis AA, Sing D, Tay B. Anterior Versus Posterior Approaches for Odontoid Fracture Stabilization in Patients Older Than 65 Years: 30-day Morbidity and Mortality in a National Database. Clin Spine Surg. 2017;30(8):E1033-8.
Salisbury AC, Reid KJ, Alexander KP, Frederick AM, Sue-Min L, Paul SC et al. Diagnostic blood loss from phlebotomy and hospital-acquired anemia during acute myocardial infarction. Arch Intern Med. 2011;171(18):1646-53.
Wu WC, Schifftner TL, Henderson WG, Charles BE, Roy MP, Georgette U et al. Preoperative hematocrit levels and postoperative outcomes in older patients undergoing noncardiac surgery. JAMA. 2007;297(22):2481-8.
Hill BL, Brown R, Gabel E, Nadav R, Christine L, Maxime C et al. An automated machine learning-based model predicts postoperative mortality using readily-extractable preoperative electronic health record data. Br J Anaesth. 2019;123(6):877-86.
Alluri R, Bouz G, Solaru S, Kang H, Wang J, Hah RJ. A Nationwide Analysis of Geriatric Odontoid Fracture Incidence, Complications, Mortality, and Cost. Spine (Phila Pa 1976). 2021;46(2):131-7.
Daniels AH, Arthur M, Esmende SM, Vigneswaran H, Palumbo MA. Incidence and cost of treating axis fractures in the United States from 2000 to 2010. Spine (Phila Pa 1976). 2014;39(18):1498-505.
Lopez CD, Constant M, Anderson MJJ, Confino JE, Heffernan JT, Jobin CM. Using machine learning methods to predict nonhome discharge after elective total shoulder arthroplasty. JSES Int. 2021;5(4):692-8.
Penny-Dimri JC, Bergmeir C, Perry L, Hayes L, Bellomo R, Smith JA. Machine learning to predict adverse outcomes after cardiac surgery: A systematic review and meta-analysis. J Card Surg. 2022;37(11):3838-45.
Wang H, Fan T, Yang B, Lin Q, Li W, Yang M. Development and Internal Validation of Supervised Machine Learning Algorithms for Predicting the Risk of Surgical Site Infection Following Minimally Invasive Transforaminal Lumbar Interbody Fusion. Front Med (Lausanne). 2021;8:771608.
Wilcox T, Smilowitz NR, Xia Y, Beckman JA, Berger JS. Cardiovascular Risk Factors and Perioperative Myocardial Infarction After Noncardiac Surgery. Can J Cardiol. 2021;37(2):224-31.