Comparative study of functional and radiological outcomes of the usage of two devices, derotation type cephalomedullary nail and the helical blade type in unstable intertrochanteric fractures in the geriatric population at a tertiary-level center

Authors

  • Vishal Prakash Department of Orthopaedics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
  • Neelu Singh Department of Obstetrics and Gynaecology, CHC Sahebganj, Mujaffarpur, Bihar, India
  • Govind Kumar Gupta Department of Orthopaedics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
  • Vinay Prabhat Department of Orthopaedics, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India

DOI:

https://doi.org/10.18203/issn.2455-4510.IntJResOrthop20233506

Keywords:

Intertrochanteric femur fracture, Harris hip score, Cleveland index, Helical blade

Abstract

Background: Intertrochanteric fracture is a common osteoporotic fracture among elderly populations in an aging society. Early surgical fixation on these aging patients has been proposed recently for early rehabilitation and has had a positive impact on reducing comorbidities. For unstable fractures, intramedullary implants generally present biomechanical advantages over their extramedullary counterparts.

Methods: The study was a 2 years prospective comparative study from 1st December 2020 to 1st December 2022 conducted in the department of orthopaedics, Rajendra institute of medical sciences, Ranchi, Jharkhand, India. Total number of patients were 50, PFN done in 25 cases and PFN-A2 in another 25 cases.

Results: Mean age is 64.4 years in PFN group as compared to 67.3 years in PFN-A2 group. PFN-A2 was done in 84% male while PFN in only 76 % male and in both groups right side was mostly affected. Average surgery time, amount of blood loss, average number of C-arm shoot was more in PFN group.

Conclusions: In this study of 50 patients, 25 treated by PFN and 25 by PFN-A2, it was concluded that PFN-A2 was a better construct to treat patients of older age group having osteoporosis because here reaming was not done and helical blade was inserted by hammering which caused compaction of bones in head and neck region.

References

Burge R, Dawson-Hughe B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2017;22:465-75.

Cummings SR, Rubin SM, Black D. The future of hip fractures in the United States. Numbers, costs, and potential effects of postmenopausal estrogen. Clin Orthop Relat Res. 1990;252:163-6.

Tamaki J, Fujimori K, Ikehara S, Kamiya K, Nakatoh S, Okimoto N, et al. Estimates of hip fracture incidence in Japan using the National Health Insurance Claim Database in 2012-2015. Osteoporos In. 2019;30:975-83.

Sasabuchi Y. Matsui H, Lefor AK, Fushimi K, Yasunaga H. Timing of surgery for hip fractures in the elderly: A retrospective cohort study. Injury. 2018;49:1848-54.

Sheehan KJ, Sobolev B, Guy P. Mortality by Timing of Hip Fracture Surgery: Factors and Relationships at Play. J Bone Joint Surg Am. 2017;99:e106.

Sobolev B, Guy P, Sheehan KJ, Kuramoto L, Sutherland JM, Levy AR et al. Mortality effects of timing alternatives for hip fracture surgery. CMAJ. 2018;190:E923-33.

Guimarães JAM, Guimarães ACA, Franco JS. Avaliação do emprego da haste femoral curta na fratura transtrocantérica instável do fêmur. Rev Bras Ortop. 2008;43:406-17.

Tyllianakis M, Panagopoulos A, Papadopoulos A, Papasmos S, Mousafiris. Treatment of extracapsular hip fractures with the proximal femoral nail (PFN): Long term results in 45 patients. Acta Orthop Belg. 2004;70:444-54.

Zhang K, Zhang S, Yang J, Dong W, Wang S, Cheng Y et al. Proximal femoral nail vs. dynamic hip screw in treatment of intertrochanteric fractures: a meta-analysis. Med Sci Monit. 2014;20:1628-33.

Kulkarni GS, Limaye R, Kulkarni M, Kulkarni S. Intertrochanteric fractures. Indian J Orthop. 2006;40:16-23.

Strauss E, Frank J, Lee J, Kummer F, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37(10):984-9.

Anastopoulos G, Chissas D, Dourountakis J. Computer-assisted three-dimensional correlation between the femoral neck-shaft angle and the optimal entry point for antegrade nailing. Injury. 2010;41(3):300-5.

Ansari CMM, Ten HJD, Oey PL, De Kort GA, Van der Meulen W, Van der Werken C et al. Intramedullary femoral nailing through the trochanteric fossa versus greater trochanter tip: a randomized controlled study with in-depth functional outcome results. Eur J Trauma Emergency Surg. 2011;37(6):615-22.

Farhang K, Desai R, Wilber JH, Cooperman DR, Liu RW. An anatomical study of the entry point in the greater trochanter for intramedullary nailing. Bone Joint J. 2014;96-B(9):1274-81.

Sharan M, Surendra UK, Rajendra A, Nithin EN, Krithika K, Pragya T. The Results of Unstable Intertrochanteric Femur Fracture Treated with Proximal Femoral Nail Antirotation-2 with respect to Different Greater Trochanteric Entry Points. Adv Ort. 2020;2834816.

Akan K, Cift H, Ozkan K, Eceviz E, Tasyikan L, Eren A. Effect of osteoporosis on clinical outcomes in intertrochanteric hip fractures treated with a proximal femoral nail. J Int Med Res. 2011;39(3):857-65.

Gupta RK, Gupta V, Gupta N. Outcomes of osteoporotic trochanteric fractures treated with cement-augmented dynamic hip screw. Indian J Orthop. 2012;46(6):640-45.

Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am.

:77:1058-64.

Andruszkow H, Frink M, Frömke C, Matityahu A, Zeckey C, Mommsen P et al. Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. In Orthop. 2012;36:2347-54.

Rubio-Avila J, Madden K, Simunovic N, Bhandari M. Tip to apex distance in femoral intertrochanteric fractures: a systematic review. I Orthop Sci. 2013;18:592-8.

Kuzyk PR, Zero R, Shah S, Olsen M, Waddell JP, Schemitsch EH. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma. 2012;26:414-21.

Wu CC, Shih CH, Lee MY, Tai CL. Biomechanical analysis of location of lag screw of a dynamic hip screw in treatment of unstable intertrochanteric fracture. J Trauma. 1996;41:699-702.

Kane P. Vopat B, Heard W, Thakur N, Paller D, Koruproluet S et al. Is tip apex distance as important as we think? A biomechanical study examining optimal lag screw placement. Clin Orthop Relat Re. 2014:472:2492-8.

Cleveland M, Bosworth DM, Thompson FR, Wilson HJ Jr, Ishizuka T. A ten-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am. 1959;41-a:1399-408.

Singh M, Nagrath AR, Maini PS. Changes in trabecular pattern in the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am. 1970;52(1):457-67.

Baumgaertner MR, Curtin SL, Lindskog DM: Intramedullary versus extramedullary fixation for the treatment of intertrochanteric hip fractures. Clin Orthop Relat Res. 1998;348:87-94.

Lenich A, Mayr E, Ruter A, Möckl C, Füchtmeier B. First results with the trochanter fixation nail (TFN): a report on 120 cases. Arch Orthop Trauma Surg. 2006;126:706-12.

Saudan M, Lübbeke A, Sadowski C, Riand N, Stern R, Hoffmeyer P. Pertrochanteric fractures: is there an advantage to an intramedullary nail? A randomized, prospective study of 206 patients comparing the dynamic hip screw and proximal femoral nail. J Orthop Trauma. 2002;16(6):386-93.

Butt MS, Krikler SJ, Nafie S, Ali MS. Comparison of dynamic hip screw and gamma nail: a prospective, randomized, controlled trial. Injury. 1995;26:615-8.

Zou J, Xu Y, Yang H. A comparison of proximal femoral nail antirotation and dynamic hip screw devices in trochanteric fractures. J Int Med Res. 2009;37(4):1057-64.

Rethnam U, Cordell-Smith J, Kumar TM, Simha A. Complex proximal femoral fractures in the elderly managed by reconstruction nailing - complications and outcomes: a retrospective analysis. J Trauma Manag Outcomes. 2007;1(7):1-7.

Adams CI, Robinson CM, Court Brown CM, McQueen MM. Prospective randomized study-controlled trial of an Intramedullary Nail versus dynamic screw or plate for intertrochantric fractures of femur J Ortho Trauma. 2001;15(6):394-400.

Werner-Tutschku W, Lajtai G, Schmiedhuber G, Lang G, Pirkl C, Orthner E. Intra-und perioperative Komplikationen bei der Stabilisierung von per-und subtrochantären Femurfrakturen mittels PFN. Unfallchirurg. 2002;105:881-5.

Strauss EJ, Kummer FJ, Koval KJ, Egol KA. The "Z-effect" phenomenon defined: a laboratory study. J Orthop Res. 2007;25:1568-73.

Al-yassari G, Langstaff RJ, Jones JW, Al-Lami M. The AO/ASIF proximal femoral nail (PFN) for the treatment of unstable trochanteric femoral fracture. Injury. 2002;33:395-9.

Brunner A, Jöckel JA, Babst R. The PFNA proximal femoral nail in treatment of unstable proximal femur fractures-3 cases of postoperative perforation of the helical blade into the hip joint. J Orthop Trauma. 2008;22:731-6.

Strauss E, Frank J, Lee J, Kummer F, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37(10):984-9.

Born C, Karich B, Bauer C, von Oldenburg G, Augat P. Hip screw migration testing: first results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res. 2011;29(5):760-66.

Pu JS, Liu L, Wang GL, Fang Y, Yang TF. Results of the proximal femoral nail anti-rotation (PFNA) in elderly Chinese patients. Int Orthop. 2009;33(5):1441-4.

Andrej NN, Anthony LO, Piers JY. Should the tip-apex distance (TAD) rule be modified for the proximal femoral nail antirotation (PFNA)? A retrospective study. J Orthop Surg Res. 2013;8:35.

Gavaskar A, Subramanian M, Tummala N. Results of proximal femoral nail antirotation for low velocity trochanteric fractures in the elderly. Indian J Orthop. 2012;46(5):556-60.

Simmormacher RK, Ljungquist J, Baish H, Hockertz T, Vochteloo AJH, Ochs U et al. The new Proximal Femoral Nail Antirotation in daily practice; results of a multicentric clinical study Injury. 2008;39(8):932-9.

Park JH, Lee YS, Park JW, Wang JH, Kim JG. A comparative study of screw and helical proximal femoral nails for the treatment of intertrochanteric fractures. Orthopaedics. 2010;33(2):81-5.

Gardenbroek T, Segers M, Simmermacher R, Hammacher E. The proximal femoral nail antirotation: an identifiable improvement in the treatment of unstable pertrochanteric fractures? J Trauma. 2011;71(1):169-74.

D’Arrigo C, Carcangiu A, Perugia D, Scapellato S, Alonzo R, Frontini S et al. Intertrochanteric fractures: Comparison between two different locking nails. Int Orthop. 2012;36:2545-51.

Xu Y, Geng D, Yang H, Wang X, Zhu G. Treatment of unstable proximal femoral fractures: comparison of the proximal femoral nail antirotation and gamma nail 3. Orthopedics. 2010;33(7):473.

Garg B, Marimuthu K, Kumar V, Malhotra R, Kotwal PP. Outcome of short proximal femoral nail antirotation and dynamic hip screw for fixation of unstable trochanteric fractures. A randomised prospective comparative trial. Hip Int. 2011;21:536.

Downloads

Published

2023-11-02

Issue

Section

Original Research Articles