Original Research Article

DOI: https://dx.doi.org/10.18203/issn.2455-4510.IntJResOrthop20251805

Evaluating the effectiveness of peroneus longus tendon as an autograft for primary anterior cruciate ligament reconstruction: a prospective study

Satish Shervegar, Deepak B. Veeraiah, Prabhu Vignesh M. G.*, Karthik M. Venkataramana, Ningaraj Dyapur

Department of Orthopaedics, Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka, India

Received: 01 May 2025 Revised: 06 June 2025 Accepted: 11 June 2025

*Correspondence:

Dr. Prabhu Vignesh M. G.,

E-mail: prabhuvignesh1997@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: The most common significant ligamentous injury to the knee joint is an anterior cruciate ligament (ACL) tear. The ACL reconstruction aims to restore knee stability, allow the patient to return to regular activities, including sports, and delay the onset of osteoarthritis. The choice of graft plays a vital role and the most popular autograft for reconstruction is the hamstring tendon graft. Many Orthopaedic surgeons use peroneus longus tendon autograft, and it is biomechanically comparable to a hamstring tendon autograft. The aim of this study is to assess the functional outcome and donor site morbidity and analyses complications of using peroneus longus autograft in ACL reconstruction.

Methods: Study was conducted from October 2023 to March 2024 in Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka. Using Consecutive sampling technique, a total of 30 patients who fulfilled the criteria were included and observed prospectively for a period of 1 year. Functional scores were recorded preoperatively and 1 year after surgery using IKDC and lysholm scores. Donor site morbidities were assessed with AOFAS score and MRC grading- plantarflexion at ankle and eversion at subtalar joint.

Results: Ankle functions at donor site are preserved well in almost all patients with excellent AOFAS score and attained excellent functional outcome in lysholm as well as IKDC knee score.

Conclusion: Peroneus longus tendon serves as a suitable autograft option for ACL reconstruction, due to the convenience of its harvest, an aesthetically pleasing outcome, and the better postoperative knee scores. Additionally, the excision of the peroneus longus tendon has not resulted in ankle instability, making it viable for use as an autogenous graft in ACL reconstruction procedures.

Keywords: ACL, Peroneus longus tendon graft, Donor site morbidity

INTRODUCTION

The anterior cruciate ligament (ACL) is the most often injured ligament in the knee. Noncontact or contact mechanisms, such as rotating forces versus a direct impact to the knee, cause the majority of ACL tears in athletes. Skiers, soccer players, and basketball players are the athletes most at risk for noncontact injuries, while football

players are the most at risk for contact injuries. ^{1,2} ACL is the principal stabilizer against anterior translation of the tibia on the femur, as well as rotation and valgus stress. ACL rupture is a common knee injury that results in a decreased quality of life. Recurrent episodes of instability and a higher risk of intraarticular injury, including meniscal and cartilage tears, result from an ACL deficiency in the knee.³ Reconstruction of the ACL helps

patients to resume sports activities while also delaying the onset of osteoarthritis caused by meniscal function loss.

ACL reconstruction is usually done with an arthroscopic method, which is minimally invasive. The type of graft used is crucial in achieving adequate knee stability following surgery. The hamstring and bone patellar bone tendon grafts are leading options among autografts that are widely recognized. Despite their common usage, there are still debates concerning the best graft selection due to certain drawbacks. The utilization of the peroneus longus tendon autograft represents a recent advancement in ACL reconstruction. ^{5,6}

However, there are very few studies concerning the functional results and complications at the donor site.⁷ In this research, we assessed the effectiveness of using the Peroneus Longus tendon as a graft for primary ACL reconstruction and assessed its potential impact on foot and ankle function.

METHODS

Study design

This is a prospective interventional study conducted after obtaining approval from ethics committee.

Study duration

Study was conducted from October 2023 to March 2024.

Study place

The study was conducted in Sapthagiri Institute of Medical Sciences and Research Centre, Bangalore, Karnataka.

Sample size

Using Consecutive sampling technique, a total of 30 patients fulfilling the inclusion criteria were enrolled for the study after obtaining informed consent.

Inclusion criteria

Inclusion criteria included age between 18-60 years; symptomatic ACL insufficiency associated with or without meniscal or chondral injury; MRI evidence of ACL tear; examination under anaesthesia showing evidence of ACL insufficiency like Lachman test and pivot shift test positive.

Exclusion criteria

Exclusion criteria were dislocated knee joint; grade 3 collateral ligament insufficiency; multi ligamentous injury; neurovascular insufficiency of affected limb.

Data analysis

Data collected was entered in MS excel and analysis was carried out using statistical software called SPSS version 20. Result was expressed in the form of descriptive statistics like Mean±standard deviation, frequency and percentage. If p value<0.05 is considered to be statistically significant.

Pre-operative rehabilitation

The strength and range of motion of the knee joint were measured before surgery and recorded. Patients were taught static and dynamic quadriceps exercises for a period of 2-5 days. All of the patients were given information about post-operative rehabilitation.

Surgical technique

Under spinal anaesthesia, in supine position first a diagnostic arthroscopy was performed and diagnosis of ACL injury with/without meniscus and other ligamentous injury was confirmed.³ After arthroscopic debridement and preparation of femoral footprint for ACL, peroneus longus graft was harvested by an incision 2 to 3 cm above and 1 cm behind the lateral malleolus.

The tendons of the peroneus longus and peroneus brevis were identified. At 2 to 3 cm above the level of the lateral malleolus, the tendon division was marked. After that, an end-to-end suture was performed between distal part of peroneus longus and peroneus brevis tendon.

To avoid peroneal nerve injuries, with the ankle and foot in plantar flexion the peroneus longus tendon was stripped proximally with a tendon stripper till 4 to 5 cm below the fibular head. Faraft was prepared and folded into double strands for single bundle ACL reconstruction there after tibial tunnel and femoral tunnel were made, with their centers corresponding to the native ACL tibial and femoral attachment sites, respectively. The anteromedial portal was used to make the femoral tunnel, resulting in an anatomic femoral tunnel position. The graft was secured using a titanium interference screw on the tibial side and an Endo button on the femoral side.

Post-operative management

Immobilization with a long knee brace immediately after surgery. On the 2nd and 7th post-operative days, the wound was examined. On the 15th post-operative day, the sutures were removed. From post op day one, rehabilitation was started as per standard ACL rehabilitation protocol.

Evaluation

Anteroposterior and lateral radiographs were taken on all patients after surgery to determine the tunnel placement and position of the Endo button and interference screw.

Patients were evaluated at two weeks, four weeks, six weeks, two months, three months, six months, nine months, and one year and functional outcomes were assessed. Patients were assessed using the international knee documentation 2000 score (IKDC) 10 and the Lysholm Knee Scoring Scale. Donor site morbidity was clinically assessed by using AOFAS (American Orthopaedic Foot and Ankle Society) Ankle-Hindfoot scoring, MRC grading for peroneus longus tendon—plantar flexion at ankle joint and eversion at sub tatalar joint and complications were also noted.

RESULTS

In our audit encompassing 30 patients with a mean age of 34 years with maximum number of patients in the age group of 21-30 years which is 14 patients (46.67%) followed by 7 patients (23.33%) in the 31-40 age group, 5 patients (16.67%) in the 41-50 age group and 4 patients (13.33%) in the 51-60 years age group.

The majority were male (83.33%, n=25/30), and a smaller proportion were female (16.67%, n=5/30). The examination focused on various aspects of ACL tear management, side of involvement, mode of injury, injury to surgery interval, symptoms at the time of presentation, functional outcome, donor site morbidity and complications. Majority of patients had right sided injury (60%, n=18/30) remaining (40%, n=12/30) were left sided injury. Road traffic accidents (66.67%, n=20/30) emerged as the most prevalent cause, followed by sports related injuries (20%, n=6/30) and others (13.33%, n=4/30).

Majority of patients had surgery after 4-6 months from injury (36.67%, n=11 /30), and within 3 months in (30%, n=9/30), after 7-9 months in (23.33%, n=7/30), and least commonly after 10-12 months (10%, n=3/30). Majority of patients presented with knee pain and instability following injury (36.67 %, n=11 /30) followed by only knee pain in (23.33 %, n=7), and smaller proportion with instability (20%, n=6/30) and locking (20%, n=6/30).

In our study, the preoperative mean standard deviation of lysholm knee score is 67.32±11.67 and IKDC knee score is 58.17±6.42. The mean standard deviation of postoperative, at 1 year follow up lysholm knee score is 94.4±7.13 and IKDC knee score is 91.07±3.91. In our study, the preoperative mean standard deviation of

AOFAS score is 100±0.00. The mean standard deviation of postoperative, at 1 year follow up AOFAS score is 96.75±4.6.

Figure 1: Intra-operative images of peroneus longus harvest. (A) Skin incision; (B) identification of PL tendon; (C) stripping of tendon; (D) preparation of graft; (E) double strand PLT graft; (F) arthroscopic view of graft passage.

Figure 2: Postoperative X -ray of ACL reconstruction with Endo button and interference screw.

In our study donor site morbidity assessed by using MRC grading, Plantar flexion at ankle shows grade 5 in (96.67 %, n=29/30) and grade 4 in (3.33 %, n=1/30) and Eversion at subtalar joint shows grade 5 in (93.33%, n= 28/30) and grade 4 in (6.67%, n=2/30) and compared with contralateral side at 1 year follow up after surgery. The complications after surgery, at 1 year follow up noted were anterior kneeling pain in 3.33% patients and numbness at graft harvested site in 3.33% patients.

Table 1: Functional outcome assessment using lysholm and IKDC knee scores.

Knee score	Pre-operative mean±SD	Post-operative (at 1 year follow up) mean±SD	P value
Lysholm	67.32±11.67	94.4±7.13	< 0.001
IKDC	58.17±6.42	91.07±3.91	< 0.001

Table 2: Evaluation of pre- and post-operative AOFAS score.

	Pre-operative mean±SD	Post-operative (at 1 year follow up) mean±SD	P value
AOFAS Score	100 ± 0.00	96.75±4.6	0.02

Table 3: Donor site morbidity of peroneus longus graft by MRC grading.

MRC	Plantar flexion at ankle after surgery at 1 year follow up		Eversion at subtalar joint after surgery at 1 year follow up		P value
grading	Donor site	Contralateral site	Donor site	Contralateral site	
Grade 5	29 (96.67 %)	30 (100 %)	28 (93.33%)	30 (100 %)	0.11
Grade 4	1 (3.33 %)	0	2(6.67%)	0	

DISCUSSION

Arthroscopic reconstruction of anterior cruciate ligament with Bone-Tendon-Bone graft is associated with donor site morbidity like anterior knee pain and kneeling problems. 11 Hence shift of reconstruction from bone-tendon-bone graft to soft tissue grafts. Hamstring tendon grafts possess higher mechanical strength compared to bone-patellar tendon-bone grafts. Patients treated with hamstring tendon grafts are at a lower risk of experiencing patella/femoral pain and a loss of extension. 12,13

Utilizing the hamstring tendon can lead to a notable alteration in hamstring muscle strength. 12,14,15 The functionality of the hamstrings is crucial following ACL reconstruction to safeguard the reconstructed ACL from anterior drawer forces caused by the contraction of the quadriceps. 16,17 The loss of knee flexion strength following the harvesting of the hamstring tendons may be more significant than has been estimated. 18 For these reasons we used the Peroneus Longus Tendon (PLT) graft in ACL reconstruction. The observations and results of present study were compared with the available previous similar studies. In our study functional outcome of peroneus longus graft were assessed separately with Lysholm and IKDC knee scores before surgery and after surgery at 1 year follow up and found to have better functional outcome in lysholm as well as IKDC knee score In this study lysholm knee score, the mean standard deviation of preoperative lysholm knee score is 67.32±11.67 and we have compared preoperative lysholm knee score of our study with various similar studies.

In a study by Rhatomy et al, Shi et al, Sadi et al, Nair et al, the mean standard deviation of pre operative lysholm knee scores were 70.8±10.2, 68.5±8.2, 56.85±7.30, 67.6±10.8 respectively. 19-22 In this study lysholm knee score, the mean standard deviation of post-operative at 1 year follows up lysholm knee score is 94.4±7.13 and we have compared postoperative lysholm knee score of our study with various similar studies. In studies by Rhatomy et al, Shi et al, Sadi et al, Nair et al, the mean standard deviation of post-operative at 1 year follows up lysholm knee scores were 94.9 ± 10.3 , 94 ± 6.67 , 92.35 ± 6.11 , 93.6 ± 6.3 respectively. 21,22 In a study by Agarwal et al, postoperative at 1 year follow up lysholm knee score was excellent in 46.7% patients and good in 33.3% patients.²³ Results of our study is similar to studies by Rhatomy et al, Shi et al, and better results than study by Sadi et al, Nair et al, Ismail et al .^{19-22,24} There is significant improvement in postoperative follow up Lysholm knee scores compared to

preoperative Lysholm knee score in all these studies and p value is statistically significant.

In this study IKDC knee score, the mean standard deviation of pre operative IKDC knee score is 58.17±6.42 and we have compared preoperative IKDC knee score of our study with various similar studies. In studies by Rhatomy et al, Shi et al, Khamis et al, the mean standard deviation of preoperative IKDC knee scores were 58.7±11.2, 62.4±8.5, 64.66±14.02 respectively. ^{19,20,25}

In our study IKDC knee score, the mean standard deviation of post-operative at 1 year follow-up IKDC knee score is 91.07±3.91 and we have compared postoperative IKDC knee score of our study with various similar studies. In studies by Rhatomy et al, Shi et al, Khamis et al, the mean standard deviation of post-operative at 1 year follow up IKDC knee score were 92.5±11.5, 90.48±2.36, 96.2±3.5 respectively. 19,20,25 The results of our study are almost similar to the study by Rhatomy et al, Shi et al and were better than that done by Kerimoglu et al, Angthong et al, Khajotia et al, with better IKDC score. 7,19,20,26,27

There is significant improvement in postoperative follow up IKDC knee scores compared to preoperative IKDC knee score to in all these studies and p value is statistically significant. In this study, donor site morbidity assessment with AOFAS score, the mean standard deviation of preoperative and post-operative at 1 year follows up AOFAS score is 100 and 96.75±4.6 respectively.

There was no clinically significant variation at 1-year postop AOFAS score and we have compared post operative follow up AOFAS score of our study with various similar studies.

In studies by Rhatomy et al, Khamis et al, Sadi et al, Agarwal et al, Nair et al, the mean standard deviation of post-operative at 1 year follow-up AOFAS scores were 97.3±4.2, 99.38±1.2, 96.75±5.71, 96.80±3.3, 98.14±3.166 respectively and these results were similar to our study. 26, 28-32 In the study, donor site morbidity assessment with MRC grading shows plantar flexion at 1 year follow up is grade 5 in about 29 patients and grade 4 in 1 patient and subtalar joint eversion at 1 year follow up is grade 5 in about 28 patients and grade 4 in 2 patients.

In a similar study by Agarwal et al, MRC grading shows plantar flexion at 1 year follow up is grade 5 in about 28 patients and grade 4 in 2 patient and subtalar joint eversions at 1 year follow up is grade 5 in about 26 patients

and grade 4 in 4 patients.²³ In a study by Rhatomy, Wicaksono et al, concluded that during eversion and first ray plantarflexion of the ankle joint, no muscular strength decrease was observed after ACL restoration with a peroneus longus tendon autograft and the donor site had outstanding FADI and AOFAS scores.⁸ In a study by Asikin et al, concluded that after harvesting the peroneus

longus tendon, the function of the donor ankle was excellent, because the peroneus brevis in the donor ankle is still intact.¹⁹ In a study by shi et al, concluded that the PLT has any influence on maintaining the arch of the foot, it is a minor and redundant. The abductor hallucis, posterior tibial tendon, and flexor pollicis longus all work together to keep the medial longitudinal arch in place.

Table 4: Preop and postop lysholm knee score of our study and in various studies.

Study	Pre operative Mean±SD	Post operative Follow up Mean±SD
Current study	67.32±11.67	94.4±7.13
Rhatomy et al ¹⁹	70.8±10.2	94.9±10.3
Shi et al ²⁰	68.5±8.2	94±6.67
Sadi et al ²¹	56.85±7.30	92.35±6.11
Nair et al ²²	67.6±10.8	93.6±6.3

Table 5. Preop and postop IKDC score of our study and in various studies.

Study	Pre operative Mean±SD	Post operative Follow up Mean±SD
Current study	58.17 ± 6.42	91.07 ± 3.91
Rhatomy et al ¹⁹	58.7 ± 11.2	92.5 ± 11.5
Shi et al ²⁰	62.4± 8.5	90.48 ± 2.36
Khamis et al ²⁵	64.66± 14.02	96.2± 3.5

Table 6. Postoperative follow up AOFAS score in various studies.

Study	Post operative Follow up Mean±SD
Current study	96.75±4.6
Rhatomy et al ¹⁹	97.3±4.2
Khamis et al ²⁵	99.38±1.2
Sadi et al ²¹	96.75±5.71
Agarwal et al ²³	96.80±3.36
Nair et al ²²	98.14±3.16

The lateral longitudinal arch is maintained by the peroneus brevis and abductor digiti minimi. The most significant structures for maintaining the foot transverse arch are the adductor pollicis muscle and the posterior tibial tendon. As a result, the evidence suggests that harvesting the PLT has no obvious influence on foot stability. Cao et al, Kumar et al, and Sharma et al, also discovered that the Peroneus longus serves as a superior option for the reconstruction of the anterior cruciate ligament, and its removal does not significantly affect the ankle joint. Service as a superior option of the anterior cruciate ligament, and its removal does not significantly affect the ankle joint.

Limitations of this study includes lack of control group for comparison, small sample size, longer term follow-up is required to assess graft survival and failure rates over time.

CONCLUSION

Functional outcome of arthroscopic anatomical single bundle anterior cruciate ligament reconstruction with peroneus longus tendon autograft was excellent according to lysholm knee score and IKDC knee score. Very minimal patients had donor site morbidity, which was not significant and Ankle functions at donor site are preserved well in almost all patients and less significant post operative complications observed in some patients, also convenience in harvesting peroneus longus tendon, its aesthetically pleasing outcome making it viable for use as an autogenous graft in ACL reconstruction procedures.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- 1. John R, Dhillon MS, Syam K, Prabhakar S, Behera P, Singh H. Epidemiological profile of sports-related knee injuries in northern India: An observational study at a tertiary care centre. J Clin Orthop Trauma. 2016;7(3):207-11.
- 2. Evans J, Nielson Jl. Anterior Cruciate Ligament Knee Injuries. In: StatPearls. Treasure Island (FL): StatPearls. 2021.
- 3. Phillips BB, Marc JM. Arthroscopy of lower extremity. Frederick M. Azar, James H. Beaty, S.

- Terry Canake. Campbell's operative orthopaedics. 13th ed. Philadelphia: Elsevier. 2017: 2490-45.
- 4. Miller SL, Gladstone JN. Graft selection in anterior cruciate ligament reconstruction. Orthopedic Clin North Am. 2002;33(4):675-83.
- 5. Nazem K, Barzegar M, Hosseini A, Karimi M. can we use peroneus longus tendon in addition to hamstring tendons for anterior cruciate ligament reconstruction. Adv Biomed Res. 2014;3:115.
- 6. Zhao J, Huangfu X. The biomechanical and clinical application of using the anterior half of the peroneus longus tendon as an autograft source. Am J Sports Med. 2012;40(3):662-71.
- 7. Kerimoğlu S, Aynaci O, Saraçoğlu M, Aydin H, Turhan AU. Anterior cruciate ligament reconstruction with the peroneus longus tendon. Actaorthoptraumatol Turc. 2008;42(1):38-43.
- 8. Rhatomy S, Wicaksono FH, Soekarno NR, Setyawan R, Primasara S, Budhiparama NC. Eversion and first ray plantarflexion muscle strength in anterior cruciate ligament reconstruction using a peroneus longus tendon graft. Orth J Sports Med. 2019;7(9):2325.
- 9. Rue JP, Ghodadra N, Lewis PB, Bach BR. Femoral and tibial tunnel position using a transtibial drilled anterior cruciate ligament reconstruction technique. J Knee Surg. 2008;21(03):246-9.
- Hefti F, Muller W, Jakob RP, Staubli HU. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;34(1):226-34.
- 11. Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthros. 2001;17:971-80.
- Tashiro T, Kurosawa H, Kawakami A, Hikita A, Fukui N. Influence of medial hamstring tendon harvest on knee flexor strength after anterior cruciate ligament reconstruction. A detailed evaluation with comparison of single- and double-tendon harvest. Am J Sports Med. 2003;31:522-9.
- 13. Sherman OH, Banffy MB. Anterior cruciate ligament reconstruction: which graft is best. Arthros. 2004;20:974-80.
- 14. Burks RT, Crim J, Fink BP, Boylan DN, Greis PE. The effects of semitendinosus and gracilis harvest in anterior cruciate ligament reconstruction. Arthros. 2005;21:1177-85.
- 15. Goradia VK, Grana WA, Pearson SE. Factors associated with decreased muscle strength after anterior cruciate ligament reconstruction with hamstring tendon grafts. Arthros. 2006;22:80.
- More RC, Karras BT, Neiman R, Fritschy D, Woo SL, Daniel DM. Hamstrings-an anterior cruciate ligament protagonist. An in vitro study. Am J Sports Med. 1993;21:231-7.
- 17. Sakai H, Yajima H, Kobayashi N, Kanda T, Hiraoka H, Tamai K, et al. Gravity-assisted pivot-shift test for anterior cruciate ligament injury: a new procedure to detect anterolateral rotatory instability of the knee

- joint. Knee Surg Sports Traumatol Arthrosc. 2006;14:2-6.
- Nakamura N, Horibe S, Sasaki S, Kitaguchi T, Tagami M, Mitsuoka T, et al. Evaluation of active knee flexion and hamstring strength after anterior cruciate ligament reconstruction using hamstring tendons. Arthros. 2002;18:598-602.
- Rhatomy S, Asikin AI, Wardani AE, Rukmoyo T, Lumban-Gaol I, Budhiparama NC. Peroneus longus autograft can be recommended as a superior graft to hamstring tendon in single-bundle ACL reconstruction. Knee Surg, Sports Traumatol, Arthros. 2019;27(11):3552-9.
- Shi FD, Hess DE, Zuo JZ, Liu SJ, Wang XC, Zhang Y, et al. Peroneus longus tendon autograft is a safe and effective alternative for anterior cruciate ligament reconstruction. J Knee Surg. 2019;32(08):804-11.
- 21. Sadi SS, Chowdhury AZ, Hossen M, Mahmud CI, Ahmed AMFU, Sanil WM, et al. Evaluation of the functional outcome of arthroscopic isolated anterior cruciate ligament reconstruction by peroneus longus tendon autograft. International J Orthopaed Sci. 2023;9(4):43-8.
- 22. Nair NMS, Krishnan J, Roy ASS, Francis CJ, Shibu R. Functional and clinical outcome of arthroscopic primary single bundle anterior cruciate ligament reconstruction using peroneus longus autograft. J Med Sci Res. 2024;12(2):108-12.
- 23. Agrawal V, Ravikiran HG, Santhosh MS, Vijay C, Prashasth BS, Chandra A. Assessment of functional outcome and donor site morbidity in anterior cruciate ligament reconstruction using peroneus longus autograft. J Med Sci Health. 2022;8(1):22-7.
- 24. Ismail H, Surendran S, Mammu S. Clinical and functional outcome of arthroscopic anterior cruciate ligament reconstruction with peroneus longus tendon graft. Int J Orthopaed Sci. 2024;10(2):101-5.
- 25. Khamis AR, Aziz MTA, El Sayed MM, Baky MAA. Anterior cruciate ligament reconstruction using peroneus longus tendon autograft: functional results. Int J Res Orthop. 2025;11:30-4.
- Angthong C, Chernchujit B, Apivatgaroon A, Chaijenkit K, Nualon P, Suchao K. The anterior cruciate ligament reconstruction with the peroneus longus tendon: a biomechanical and clinical evaluation of the donor ankle morbidity. J Med Assoc Thai. 2015;98(6):555-60.
- 27. Khajotia BL, Chauhan S, Sethia R, Chopra BL. Functional outcome of arthroscopic reconstruction of anterior cruciate ligament tear using peroneus longus tendon autograft. Int J Res Orthop. 2018;4:898-903.
- Cao HB, Liang J, Xin JY. Treatment of anterior cruciate ligament injury with peroneus longus tendon. Zhonghua Yi Xue Za Zhi. 2012;92(35):2460-
- 29. Kumar VK, Narayanan SK, Vishal RB. A study on peroneus longus autograft for anterior cruciate ligament reconstruction. Int J Res Med Sci. 2020;8:183-8.

30. Sharma D, Agarwal A, Shah K, Shah R, Shah H. Peroneus longus: Most promising autograft for arthroscopic ACL reconstruction. Indian J Orthop Surg. 2019;5(3):172-5.

Cite this article as: Shervegar S, Veeraiah DB, Prabhu Vignesh MG, Venkataramana KM, Dyapur N. Evaluating the effectiveness of peroneus longus tendon as an autograft for primary anterior cruciate ligament reconstruction: a prospective study. Int J Res Orthop 2025;11:820-6.